

AVR316: SMbus Slave Using the TWI Module

Features
• Supports 9 different SMBus protocols
• Packet error checking (PEC)
• Interrupt-driven SMBus slave driver
• Sample implementation with demonstration of all supported protocols

1 Introduction
The System Management Bus (SMBus) uses the principles of the I2C bus to make
a bus where devices can communicate to exchange system and power
management information.

SMBus is commonly used in personal computers for smart batteries, temperature
control and other low bandwidth system management communication.

The SMBus specification revision 2.0 lists 11 protocols for device-to-device
communication, in addition to the Address Resolution Protocol (ARP) which is used
to dynamically assign addresses to devices. Each protocol is basically a sequence
of I2C commands. Slave devices can implement the full set, or a subset of the
defined protocols, allowing for implementations scaled for the task at hand.

This application note provides background information on the SMBus specification
and the AVR TWI module, an interrupt-driven SMBus slave driver and a sample
implementation.

Figure 1-1. SMBus system overview.

SMBDAT
SMBCLK

MASTER/
SLAVE

SLAVE

SLAVE

MASTER/
SLAVE

SLAVE

8-bit
Microcontrollers

Application Note

Rev. 2583A-AVR-10/05

2 AVR316
2583A-AVR-10/05

2 The SMBus specification
The SMBus specification builds on the principles of I2C to enable communication
between many devices on a two-wire bus, but there are also some small but
important differences both in electrical and timing parameters.

2.1 Differences between SMBus and I2C
The following comparison is for SMBus 2.0 low power devices.

First of all, I2C defines input voltage levels as percentages of VCC, while SMBus
operates with fixed input voltage levels. Input voltage level minimum and maximum
ratings for standard mode I2C and SMBus are shown in Table 1.

Table 1. Input voltage levels for I2C and SMBus
 I2C (Standard mode) SMBus

 Min. Max. Min. Max.
VIL -0.5V 0.3VCC - 0.8V

VIH 0.7VCC VCCmax+0.5V 2.1V 5.5V
AVRs comply best with SMBus VIH Min. at a supply voltage of 3V instead of 5V.

I2C places restrictions on the maximum bus capacitance. The SMBus specification
has no such restriction, but requires the pull-down current to be in the range of 100-
350µA.

The rise and fall times of bus signals are defined in the SMBus specification. The I2C
specification defines only maximum bus capacitance, but not rise and fall times.

The maximum leakage current of each device connected to an I2C bus is specified as
10µA, while the corresponding requirement for SMBus is 5µA.

SMBus requires a minimum bus clock frequency of 10 kHz (Except when the bus is
idle). I2C has no such requirement. The maximum frequency of SMBus is 100 kHz,
which equals the maximum speed of I2C operating in standard mode.

SMBus requires SMBDAT (SDA) to remain unchanged for 300ns after the falling
edge of SMBCLK (SCL). No such requirements are imposed by the I2C specification.

SMBus has several limitations on the maximum extension of a clock low time. I2C
allows the clock low time to be stretched for an arbitrary length of time, allowing a
faulty device to block the entire bus.

SMBus requires devices to always acknowledge it’s slave address, regardless of
what other task the device is performing. I2C has no such requirement.

SMBus uses the NACK signal to indicate that a slave is busy, or that an error
occurred. Slave devices must be able to generate the NACK signal after the transfer
of each byte, even if it is the last byte in the transfer.

2.2 Packet Error Code (PEC)
The SMBus specification includes a CRC based error detection algorithm called
Packet Error Code (PEC). An SMBus device is not required to use PEC, but any
device with PEC capability must be able to communicate with other SMBus devices
that do not implement PEC.

 AVR316

 3

2583A-AVR-10/05

The PEC is calculated as an 8-bit CRC with polynomial X8+X2+X1+1. The PEC CRC
is computed in the order the bits are received and transmitted. All bytes of a protocol,
including SLA+R/W must be included in the calculation, while the control signals
START, Repeated START, STOP, ACK and NACK are left out.

There are several ways to implement the CRC calculation used for PEC. The CRC
can be calculated, using shifts and xor operations, or a lookup table can be utilized. A
full lookup table takes up 256 bytes of flash memory, but the CRC algorithm is
executed in only a few clock cycles. The calculation method has very low memory
requirements, but executes much slower and has a larger implementation than the
lookup method.

2.3 The SMBus protocols
The SMBus specification 2.0 defines 11 protocols for device to device
communication. Each device can implement the full set, or a subset, of the protocols.
If a device does not implement a protocol, the result of the operation is undefined.

Each protocol is composed of a strict sequence of I2C data transfer format(s). The
SMBus protocols will be presented by sequence diagrams. The meaning of the
different symbols in the diagrams is listed in Table 2.

Table 2. SMBus protocol diagram legend
Symbol Meaning

S Start condition

Sr Repeated start condition

R Read (1)

W Write (0)

AA / Acknowledge (0) or Not Acknowledge (1)

P Stop condition

PEC Packet Error Code

 Master to slave

 Slave to master

Additionally, a number placed directly above a field specifies the bit width of the field,
and a number placed directly below a field specifies that the field is required to have
this value.

2.3.1 Quick command

The “Quick command” protocol can be used to send 1 bit through the R/W bit to a
slave device.

Figure 2. Quick command

S Slave Address R / W A P

1 7 1 1 1

4 AVR316
2583A-AVR-10/05

2.3.2 Send byte

The “Send byte” protocol can be used to send 1 byte of data to a slave device.

Figure 3. Send byte

Data ByteS Slave Address W A PA

1 7 1 1 8 1 1

Figure 4. Send byte with PEC

Data ByteS Slave Address W A PA

1 7 1 1 8 1 1

PEC A

18

2.3.3 Receive byte

The “Receive byte” protocol can be used to request 1 byte of data from a slave.

Figure 5. Receive byte

Data ByteS Slave Address R PA

1 7 1 1 8 1 1

A

Figure 6. Receive byte with PEC

Data ByteS Slave Address R PA

1 7 1 1 8 1 1

A

1

PEC

8

A

2.3.4 Write byte/word

The “Write byte/word” protocol can be used to send one command code, and one
byte/word of data. The command code can for instance specify the memory location
to place the data.

Figure 7. Write byte

Command codeS Slave Address W A PA

1 7 1 1 8 1 18

A

1

Data byte

Figure 8. Write byte with PEC

Command codeS Slave Address W

A P

A

1 7 1 1 8

1 1

8

A

1

Data byte A

1

8

PEC

Figure 9. Write word

Command codeS Slave Address W

A P

A

1 7 1 1 8

1 1

8

A

1

Data byte low A

1

8

Data byte high

 AVR316

 5

2583A-AVR-10/05

Figure 10. Write word with PEC

Command codeS Slave Address W

A P

A

1 7 1 1 8

1 1

8

A

1

Data byte low A

1

8

Data byte high A

1 8

PEC

2.3.5 Read byte/word

The “Read byte/word” protocol can be used to read one byte/word from a slave
device. The data read can be controlled by the command code, for instance by
addressing internal registers of the slave device.

Figure 11. Read byte

Command codeS Slave Address W

P

A

1 7 1 1 8

1 1

A

1

Sr Slave Address

71

R

1

A

1

Data Byte

8

A

Figure 12. Read byte with PEC

Command codeS Slave Address W

P

A

1 7 1 1 8

1 1

A

1

Sr Slave Address

71

R

1

A

1

Data Byte

8

A

1

PEC

8

A

Figure 13. Read word

Command codeS Slave Address W

P

A

1 7 1 1 8

1 1

A

1

Sr Slave Address

71

R

1

A

1

Data Byte Low

8

A

1

Data Byte High

8

A

Figure 14. Read word with PEC

Command codeS Slave Address W

P

A

1 7 1 1 8

1 1

A

1

Sr Slave Address

71

R

1

A

1

Data Byte Low

8

A

1

Data Byte High

8

A

1

PEC

8

A

2.3.6 Process call

The “Process call” protocol allows the master to send both a command code and two
bytes of data to a slave and receive two bytes of data. This can for instance be used
to call a function with argument(s) on a slave device and receive the return value, in
one command.

6 AVR316
2583A-AVR-10/05

Figure 15. Process call

Command codeS Slave Address W

P

A

1 7 1 1 8

1 1

A

1

A

1

Data Byte High

8

A

1 1

Data Byte Low

8

Sr

1

Slave Address

7

R A

1

Data Byte Low

8

A

1

Data Byte High

8

A

Figure 16. Process call with PEC

Command codeS Slave Address W

P

A

1 7 1 1 8

1 1

A

1

A

1

Data Byte High

8

A

1 1

Data Byte Low

8

Sr

1

Slave Address

7

R A

1

Data Byte Low

8

A

1

Data Byte High

8

A

1

PEC

8

A

2.3.7 Block write/read

The “Block write/read” protocol can be used to send/receive up to 32 bytes of data
to/from a slave device. A command code and the number of bytes to write/read is
transmitted first. The byte count must be in the range 1 to 32 and does not include the
PEC.

Figure 17. Block Write

Command codeS Slave Address W

A P

A

1 7 1 1 8

1 1

A

1

A

1

Data Byte 1

8

A

1

Byte Count = N

8

Data Byte N

8

Figure 18. Block Write with PEC

Command codeS Slave Address W

A P

A

1 7 1 1 8

1 1

A

1

A

1

Data Byte 1

8

A

1

Byte Count = N

8

Data Byte N

8

PEC

8

A

1

 AVR316

 7

2583A-AVR-10/05

Figure 19. Block Read

Command codeS Slave Address W

A P

A

1 7 1 1 8

1 1

A

1

A

1

Data Byte 1

8

A

1

Byte Count = N

8

Data Byte N

8

Sr

1

Slave Address

7

R

1

A

1

Figure 20. Block Read with PEC

Command codeS Slave Address W

A

A

1 7 1 1 8

1

A

1

A

1

Data Byte 1

8

A

1

Byte Count = N

8

Data Byte N

8

Sr

1

Slave Address

7

R

1

A

1

P

1

PEC

8

A

1

2.3.8 Block write-block read process call

The “Block write-block read process call” protocol was introduced with SMBus version
2.0 and can be used to send a command code and 1 to 32 bytes to a slave, and
receive 1 to 32 bytes from the slave in one operation. This can be used in the same
way as the Process call protocol, but the length of parameters and return values are
variable.

Figure 21. Block write - block read process call

Command codeS Slave Address W A

1 7 1 1 8

1

A

1

A

1

Data Byte 1

8

A

1

Byte Count = N

8

Data Byte N

8

Sr

1

Slave Address

7

R

1

A

1

P

1

Byte count = M

8

A

1

Data byte 1

8

A

1

Data byte M

8

A

1

A

8 AVR316
2583A-AVR-10/05

Figure 22. Block write - block read process call with PEC

Command codeS Slave Address W

A

A

1 7 1 1 8

1

A

1

A

1

Data Byte 1

8

A

1

Byte Count = N

8

Data Byte N

8

Sr

1

Slave Address

7

R

1

A

1

P

1

Byte count = M

8

A

1

Data byte 1

8

A

1

Data byte M

8

A

1

1

PEC

8

A

2.3.9 SMBus host notify protocol

The “SMBus host notify” protocol is used when a device wants to become a master.
Only a slave implementation is considered here, so the SMBus host notify protocol is
not needed.

2.4 The Address Resolution Protocol (ARP)
The Address Resolution Protocol was introduces with SMBus version 2.0 and is used
to dynamically assign unique addresses to each slave device on the bus. ARP
requires the slave device to listen to both its own slave address and an SMBus device
default address. The SMBus device default address is different from the general call
address. The AVR TWI module cannot be set up to listen to two different slave
addresses, unless one is the general call address. ARP is thus not supported.

 AVR316

 9

2583A-AVR-10/05

3 Implementing SMBus on AVR microcontrollers
The TWI module found on many AVRs will be used to implement the SMBus driver in
this application note. An introduction to the operation of the TWI module is given here.
For a thorough description of the TWI module, consult the device data sheet.

3.1 The TWI module
The basic operation of the TWI module in slave mode is as follows:

The slave address of the AVR is stored in the TWI Address Register (TWAR). The
TWI logic compares addresses transmitted on the bus to the address stored in the
device to determine whether the address of the ongoing communication matches
TWAR.

Whenever a decision has to be made to continue the ongoing communication, the
TWI interrupt flag is set. The TWI status register (TWSR) must then be examined to
determine the reason of the interrupt. The program can then take some action based
on what has happened. Finally, the TWI control register (TWCR) must be
manipulated to continue or stop the communication. This happens over and over
again until the communication is finished. The TWSR status codes relevant for slave
modes are listed in Table 3.

All information about which SMBus protocol is being transmitted must be derived from
the sequence of TWSR status codes and the data received.

Table 3. TWSR status codes
Status code TWI status

0x60 Own SLA+W has been received; ACK has been returned

0x68 Arbitration lost in SLA+R/W as master; own SLA+W has been received; ACK
has been returned

0x70 General call address has been received; ACK has been returned

0x78 Arbitration lost in SLA+R/W as master; General call address has been
received; ACK has been returned

0x80 Previously addressed with own SLA+W; Data has been received; ACK has
been returned

0x88 Previously addressed with own SLA+W; Data has been received; NACK has
been returned

0x90 Previously addressed with general call; data has been received; ACK has
been returned

0x98 Previously addressed with general call; data has been received; NACK has
been returned

0xa0 A STOP or repeated START condition has been received while still addressed
as slave

0xa8 Own SLA+R has been received; ACK has been returned

0xb0 Arbitration lost in SLA+R/W as master; own SLA+R has been received; ACK
has been returned

0xb8 Data byte in TWDR has been transmitted; ACK has been received

0xc0 Data byte in TWDR has been transmitted; NACK has been received

10 AVR316
2583A-AVR-10/05

Status code TWI status

0xc8 Last data byte in TWDR has been transmitted (TWEA = “0”); ACK has been
received

0xf8 No relevant state information

0x00 Bus error due to an illegal START or STOP condition

There are some implementation details to be aware of when implementing SMBus
with the TWI module:

• When the AVR acts as a slave receiver, one must decide before receiving
data whether to ACK or NACK that data. If data is received when e.g. a stop
or repeated start condition was expected, the ACK has already been sent
when the slave has detected the error. Similarly, this makes it impossible for
an AVR to use ACKs and NACKs to signal PEC errors. The SMBus
specification does not require the slave to do this, and suggests that
verification of PECs can be done in higher network protocol layers.

• When TWSR indicates that a STOP or repeated START condition has been
received, there is no way of knowing which one occurred. This makes it
difficult to know whether a Send byte or Read byte, Read word or a Block
read protocol is in progress.

• If it is not known in advance whether PEC is to be used when acting as slave
transmitter, there is no way of knowing when to expect a NACK in reply to a
data byte.

• The AVR TWI module does not support the Quick command very well.

None of the above points is a major problem when implementing an SMBus slave on
the AVR. The SMBus host should not rely only on ACK/NACK to decide whether a
communication completed without errors. The single bit ACK/NACKs are susceptive
to noise. PEC does not need to be supported, or handling can be accomplished in
higher level protocols. A slave implementation is free to choose which protocols to
implement. The master is responsible for issuing the right commands and the result of
an unsupported protocol is undefined according to the SMBus specification.

3.2 Proposed implementation
Based on the above discussion, a versatile implementation is proposed here. The
implementation avoids the protocols that can yield ambiguities on the AVR and
minimizes the code needed to determine what kind of protocol is in progress.
Furthermore, PEC can be supported if needed. The proposed implementation
supports the following SMBus protocols:

• Receive byte

• Write byte

• Write word

• Read byte

• Read word

• Block write

• Block read

 AVR316

 11

2583A-AVR-10/05

• Process call

• Block write – Block read Process call

This reduced set of protocols makes it very easy to determine what protocol is in
progress. Receive byte is the only protocol that starts with a SLA+R. All the other
protocols include a command code that is sent as the first data byte to the slave. The
command code could be utilized in several ways. One way is to have a unique
command code for every operation, in such a way that the protocol can always be
derived from the command code. Alternatively, the command code could specify the
address of a register or memory location.

3.3 Description of the included driver and sample application
In the sample driver and application included with this application note, the command
code uniquely identifies both the SMBus protocol and the required slave action.

A very general SMBus implementation could just take care of transmission and
reception from buffers and use flags to communicate with the main program.
However, in typical SMBus applications, the SMBus commands are used to set
register values or read back status information. The exact meaning of each command
is well defined in advance. With this in mind, the SMBus driver included is
implemented in the TWI interrupt routine, making the driver totally autonomous. The
functionality of the sample application is shown in Table 4.

Table 4. Command code assignment
Command code Action Protocol

None Read switches pressed (PIND) Receive byte

0x10 Read vendor id string Block read

0x20 Read switches pressed (PIND) Read byte

0x30 Set EEPROM pointer Write word

0x40 Read EEPROM data byte Read byte

0x41 Read EEPROM data word Read word

0x50 Output byte to LEDs (PORTB) Write byte

0x51 Output word as two alternating patterns to LEDs
(PORTB)

Write word

0x52 Output sequence of patterns to LEDs (PORTB) Block write

0x60 Return received word multiplied by 2 Process call

0x70 Return sum of received bytes as a word Block write - block
read process call

The included example is written with the STK500 development board in mind, but this
is not a prerequisite for use. When the STK500 is used, the “PORTB” header should
be connected to the “LEDS” header and the “PORTD” header should be connected to
the SWITCHES header. “Read switches pressed” returns the ones complement of
PIND. The commands that output data to PORTB/LEDS, places the data in an array.
A timer overflow interrupt outputs the sequence in the array one by one.

Optional support for PEC is included in the driver. The CRC calculation needs to be
done several places within the TWI interrupt routine. By default, the lookup table

12 AVR316
2583A-AVR-10/05

method is used, since it has the smallest and fastest implementation. It is possible to
change to CRC calculation, if the 256-byte table in flash is too big. If PEC is not
needed, it can be disabled, resulting in a smaller and faster implementation.

Since PEC support is optional, every operation relevant only to PEC is marked with
gray in the flowcharts. If PEC is not enabled, program flow will go straight through, or
in the “Yes” direction through decision blocks.

The implementation of the CRC lookup table method works as follows:

1. If this is the beginning of a new CRC calculation, set CRC value to 0.

2. Xor the old CRC value with the new data.

3. Use the value from 2 as an index into the lookup table.

4. The value retrieved at this index is the new CRC.

5. Repeat steps 2-4 until finished.

When the CRC of a data stream is appended to the data stream itself, the CRC of the
total data stream should be zero when no error is detected. This has been used in the
included driver. When a PEC is received from a master, the PEC is also fed through
the CRC calculation. In this way, PEC verification is performed by checking that the
PEC variable is zero.

To be able to track the state of the ongoing communication, a set of variables is
needed (Name in parenthesis):

• Transmit length (txLength)

• Transmit counter (txCount)

• Receive counter (rxCount)

• SMBus state flag (state)

• SMBus enable flag (enable)

• SMBus error flag (error)

• PEC (pec) (If enabled)

• Receive buffer (rxBuffer)

• Transmit buffer (txBuffer)

The receive and transmit buffers are used only by the SMBus driver as temporary
storage. Once a protocol has completed successfully, the contents of the receive
buffer is copied to the intended location. This prevents a failed communication to
cause data corruption. No other parts of the application should access the SMBus
receive and transmit buffers. The length of these buffers must be set to accommodate
the longest protocol supported.

The receive and transmit counters keep track of the progress of the current protocol.
The receive counter is increased every time one data byte is received and acts as a
pointer into the receive buffer. Similarly, the transmit counter is increased every time
one data byte is transmitted and acts as a pointer into the transmit buffer. Transmit
length is set to the total number of bytes to be transmitted.

The SMBus state flag is used in combination with the command code to make
decisions regarding the protocol being used. The flag can be set to one of the
following four values:

 AVR316

 13

2583A-AVR-10/05

• IDLE – Waiting for an SMBus protocol to start.

• READ REQUESTED – SLA+R has been received as the first command.

• WRITE_REQUESTED – SLA+W has been received as the first command.

• WRITE_READ_REQUESTED – SLA+W has been received as the first
command, repeated start, then SLA+R has been received.

The SMBus enable flag can be used by other parts of the application to enable or
disable the SMBus interface. When this flag is set, the SMBus driver will try to
complete any transmission initiated by the master. When the flag is cleared, TWI
interrupts will still be generated, but the SMBus driver will only answer to the
SLA+R/W and then attempt to abort the communication by signaling to the host that it
is busy. Note that the SMBus specification demands that any SMBus slave should be
able to reply to it’s own address at all times.

To disable the SMBus driver completely and prevent TWI interrupts from being
generated, the TWEN flag in the TWCR register must be cleared. If the TWI module
is disabled, the SCL and SDA pins will be configured as standard I/O pins. To avoid
conflict with the SMBus, these must be configured as inputs, with internal pull-ups
disabled. Note that currently all AVR devices connected to an SMBus need to be
powered to allow any bus operation.

The SMBus error flag will be set whenever an error occurs during SMBus
communication. The flag is never used for any useful purpose in the example
implementation. This must be handled in higher-level protocols.

If PEC is enabled, the pec variable holds the current PEC value calculated for this
transmission so far. Two CRC routines are included in the example. Both operates
directly on this variable and must therefore only be used by the SMBus driver.

Figure 23 shows the general program flow of the SMBus driver during the execution
of one SMBus protocol. Note that this is not the flowchart of the TWI interrupt routine,
several TWI interrupts will be triggered to complete one cycle of the flowchart in
Figure 23. At every point where a TWI interrupt is expected, a dashed box shows the
TWSR status code that corresponds to program flow in that direction.

Figure 24 and Figure 25 shows the TWI interrupt routine. These flowcharts perform
the same as the one in Figure 23, broken down to iterations of the TWI interrupt
routine.

Figure 26 shows the flowchart for the block called “Process message” in Figure 24.
This is where most of the application specific parts of the SMBus slave are
implemented. Note that while this runs the SMBCLK is held low, and it is thus
important to keep the functions short enough not to violate the SMBus TLOW:SEXT of
25ms. If this happens, the master will time out and drop the lines, and since the
AVR’s TWI module is I2C compatible there is no timeout in the TWI module. The AVR
can then hold the SMBDAT line low waiting for clock, and thus block the bus
indefinitely. This implementation has no provisions for correcting this situation, as this
should be handled according to the application.

In addition Timer/Counter1 is set up to produce interrupts at a fixed rate. This
interrupt is used to display data sequentially at the LEDs of the STK500 development
board. A sequence of up to 32 values can be put in the global array ‘leds’. The global
variable ‘ledLength’ defines the number of values to display from this array, while
‘ledIndex’ controls the current displayed value.

14 AVR316
2583A-AVR-10/05

Figure 23. General SMBus driver flow
Start

Receive SLA + R/W

R/W?

R

W

What was
received

Store data in rxBuffer,
Increase rxCounter

P / Sr

Data
byte

Reset SMBus variables

Interpret data received

Type of
SMBus

protocol?
Write

Read / Process call

Receive SLA + R

Calculate txLength
Prepare txBuffer

Send data
Increase txCount

What is
received? NACK

Finish

txCount ==
txLength? ACK

No

Send PEC
Turn off ack (last data byte)

Yes

What is
received? NACK

Finish

Set error flag
Set state = IDLE

ACK

Finish

Copy data from receive
buffer to final destination.

Finish

Set state = IDLE

Set state = IDLE

Receive Stop or data byte

Set state = WRITE
REQUESTED

0x60

0xa8

0xa0

0x80

0xa8,

0xb8 0xc0

0xc8

Set state = READ
REQUESTED

Set state = WRITE/
READ REQUESTED

txCount ==
txLength? Yes

No

Set error flag
Set state = IDLE

TWSR code

Calculate PEC

Calculate PEC

Calculate PEC

Calculate PEC

Set state = IDLE

Place data in txBuffer

Set txlength to 1

rxBuffer full?

No

Finish

Set error flag
Set state = IDLE

Yes

 AVR316

 15

2583A-AVR-10/05

Figure 24. TWI ISR part 1
TWI ISR

TWSR == $60

TWSR == $80

TWSR == $88

TWSR == $a0

No

No

No

SLA + W received,
ACK returned

Previously
addressed with
own SLA+W,
data received
ACK returned

Previously
addressed with
own SLA+W,
data received

NACK returned

Stop / Repeated
start received while
addressed as slave

Yes

No

Store data byte in
rxBuffer

Increase rxCount

Set state =
WRITE

REQUESTED

Yes

state == IDLE?

Reset SMBus
variables

No

Yes

rxBuffer full?

Yes

Set SMB state to
IDLE

Process message
(Separate flow chart)Yes

Continued at
next page

Calculate PEC

Calculate PEC

state == IDLE? Yes

Reset SMBus
variables

Return from
interrupt

Issue next TWI
command

Disable ACK

Yes

Enable ACK

No

Set SMBus error
flag

16 AVR316
2583A-AVR-10/05

Figure 25 TWI ISR part 2

TWSR == $a8

TWSR == $b8

TWSR == $c0

TWSR == $c8

No

No

No

Own SLA+R
received,

ack returned

Data byte in TWDR
transmitted,

ACK received

Data byte in TWDR
transmitted,

NACK received

Last data byte in
TWDR transmitted,

ACK received

TWSR == $00
Bus error due to an

illegal START or
STOP condition

No

No

state = IDLE? Yes

Set state to IDLE

Set state to IDLE

txCount ==
txLength?Yes Yes

Set SMBus error
flagNo

Yes

Send first byte
from txBuffer

Increase txCount

No

Set SMBus error
flagYes

Set SMBus error
flag Set state to IDLE

Send next byte
from txBuffer

Increase txCount

txCount ==
txLength?

No

Yes Place PEC in TWI
data register

Clear TWI "Enable
ACK" flag

Continued

Calculate PECYes

Calculate PEC

Calculate PEC

Set TWI Stop bit

Return from
interrupt

Issue next TWI
command

Set SMBus error
flag Set state to IDLE

Process
Receive byte

(separate
flow chart)

Set state to READ
REQUESTED

Set SMBus error
flag

Yes

 AVR316

 17

2583A-AVR-10/05

Figure 26 Process message flowchart
Process message

state == WRITE
REQUESTED?

Yes

command code
== 0x10?

command code
== 0x20?

command code
== 0x30?

command code
== 0x40?

command code
== 0x41?

command code
== 0x50?

command code
== 0x51?

command code
== 0x52?

No

No

No

No

No

No

No

No

Set state = IDLE

Finish

Fill txBuffer with
vendor string Set txLength

Set state = WRITE
READ

REQUSTED
FinishYes

Fill txBuffer with
buttons pressed Set txLength to 1

Set state = WRITE
READ

REQUSTED
FinishYes

Store data in
rxBuffer as

EEPROM pointer
Set state = IDLEYes Finish

Fill txBuffer with
EEPROM data

byte
Set txLength to 1

Set state = WRITE
READ

REQUSTED
FinishYes

Fill txBuffer with
EEPROM data

word
Set txLength to 2

Set state = WRITE
READ

REQUSTED
FinishYes

Copy data from
rxBuffer to LED

buffer

Set ledLength and
ledIndex Set state = IDLE FinishYes

Copy data from
rxBuffer to LED

buffer

Set ledLength and
ledIndex Set state = IDLE FinishYes

Copy data from
rxBuffer to LED

buffer

Set ledLength and
ledIndex Set state = IDLE FinishYes

Finish

Yes

Set SMB error flag

Yes

Yes

Yes

Set SMB error flag

Set SMB error flag

Set SMB error flag

No

No

command code
== 0x60?

command code
== 0x70?

No

No

Yes
Multiply data

received by 2 and
fill txBuffer

Set txLength
Set state = WRITE

READ
REQUSTED

Finish

Put sum of
received bytes in

txBuffer
Set txLength

Set state = WRITE
READ

REQUSTED
FinishYes

Set state = IDLENo

No

rxCount (and
PEC) ok?

rxCount (and
PEC) ok?

No

rxCount (and
PEC) ok?

rxCount (and
PEC) ok?

rxCount == 3? Yes

Set SMB error flagNo

is rxCount
correct?

Set state = IDLE

Set SMB error flag Set state = IDLE

18 AVR316
2583A-AVR-10/05

3.4 Source code
The source code is available for download as a zip-file. It has been documented with
Doxygen-compatible comments, and the compiled documentation is included with the
source in the file ‘readme.html’. It also contains info about supported compiler(s) and
on how to compile the files.

3.5 Connections
Connect the ‘SDA’ pin of the AVR to ‘SMBDAT’ and ‘SCL’ on the AVR to ‘SMBCLK’. If
an STK500 development board is used, connect ‘PORTB’ to ‘LEDS’ and ‘PORTD’ to
‘SWITCHES’. The connection of ‘PORTB’ and ‘PORTD’ is not necessary to run the
example, but the functionality will be limited.

3.6 Adapting the SMBus example
The sample implementation demonstrates how the different supported protocols can
be implemented. In order to adapt the sample application to your own needs, the
functions ‘ProcessReceiveByte‘ and ‘ProcessMessage’ must be altered. This is
documented through comments in the source code or the doxygen documentation.

Note that the clock is held low by the TWI module during execution of
‘ProcessReceiveByte‘ and ‘ProcessMessage’. Please make sure that these functions
execute fast enough to be in conformance with the ‘Clock low extending’ section of
the SMBus specification.

3.7 Adding support for new devices
If an error message is shown during compilation, saying that the device is not
supported by the SMBus driver, support for the device can be added manually. The
device needs a TWI module, and a 16 bit Timer/Counter1 (only needed for the
LEDS). This can be done by editing the ‘device_specific.h’ file.

‘device_specific.h’ contains a long list of device specific #defines. The Atmega16
definition looks like this:

#elif defined(__ATmega16__)

#define TIMER_OVF_VECT TIMER1_OVF_vect

#define TWI_VECT TWI_vect

#define TIMSK1 TIMSK

Adding support for a new device only requires a new entry like the one above. The
meaning of each symbol is described in Table 5.

Table 5. Device specific symbols
Symbol Meaning

TIMER_OVF_VECT Name of Timer/Counter1 overflow interrupt vector.

TWI_VECT Name of TWI interrupt vector

TIMSK1 Name of register containing the Timer/Counter1 overflow interrupt
enable bit (TOIE1).

3.8 Code size
See documentation for code sizes.

 AVR316

 19

2583A-AVR-10/05

4 Table of Contents
AVR316: SMbus Slave Using the TWI Module.................................. 1
Features... 1
1 Introduction .. 1
2 The SMBus specification... 2

2.1 Differences between SMBus and I2C ... 2
2.2 Packet Error Code (PEC) .. 2
2.3 The SMBus protocols .. 3
2.4 The Address Resolution Protocol (ARP)... 8

3 Implementing SMBus on AVR microcontrollers 9
3.1 The TWI module.. 9
3.2 Proposed implementation.. 10
3.3 Description of the included driver and sample application................................ 11
3.4 Source code .. 18
3.5 Connections... 18
3.6 Adapting the SMBus example ... 18
3.7 Adding support for new devices .. 18
3.8 Code size... 18

4 Table of Contents... 19
Disclaimer.. 20

2583A-AVR-10/05

Disclaimer

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR Studio® and
others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be
trademarks of others.

	Features
	Introduction
	The SMBus specification
	Differences between SMBus and I2C
	Packet Error Code (PEC)
	The SMBus protocols
	Quick command
	Send byte
	Receive byte
	Write byte/word
	Read byte/word
	Process call
	Block write/read
	Block write-block read process call
	SMBus host notify protocol

	The Address Resolution Protocol (ARP)

	Implementing SMBus on AVR microcontrollers
	The TWI module
	Proposed implementation
	Description of the included driver and sample application
	Source code
	Connections
	Adapting the SMBus example
	Adding support for new devices
	Code size

	Table of Contents
	Disclaimer

